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 A Natural Random Number Generator

 Yadolah Dodge

 Statistics Group, University of Neuchaitel, Switzerland

 Summary

 Since the introduction of "middle square" method by John von Neumann for the production of
 "pseudo-random" numbers in about 1949, hundreds of other methods have been introduced. While each
 may have some virtue a single uniformly superior method has not emerged. The problems of cyclical
 repetition and the need to pass statistical tests for randomness still leave the issue unresolved. The aim
 of this article is to suggest the most natural random number generator of all, the decimals of 7r, as a
 unique source of random numbers. There is no cyclic behaviour, all finite dimensional distributions of
 the sequence are uniform, so that it satisfies all the properties of today's generation of statistical tests;
 because of the manner in which the numbers are generated it is conjectured that it will satisfy any further
 test with probability one. In addition, the history of r, its discovery and elucidation, is co-extensive with
 the entire history of mankind.

 Key words: 7r; Random number generator; Simulation; Statistical tests; Pseudo-random numbers.

 1 Introduction

 ... going only part of the way is not the same as going the wrong way.

 Jostein Gaarder: Sophie's world

 Random numbers are used in simulation, Monte Carlo methods, survey sampling, numerical
 analysis, computer programming, experimental physics and many other fields of applied sciences
 where random events play a major role. There are many ways to produce random numbers or a
 sequence of independent numbers with a specified distribution.

 At the beginning, these numbers were obtained by mechanical devices such as well-stirred urns,
 roulette machines, or other instruments and the results were recorded either in tables, called tables

 of random numbers or used instantly for solution to a given problem. Random numbers collected in
 this fashion are sometimes called, truly random numbers.

 The work of Tippett (1927), Fisher & Yates (1938), Kendall & Babington-Smith (1939b), Peatmann
 & Shafer (1942), Royo & Ferrer (1954a,b), and Steinhaus (1954) are major contributions prior to
 1955. The total digits of random numbers found in these tables range between 1600 to 250,000. In
 1955, RAND Corporation published a book containing one million random digits. The book also
 contains introductory material describing the production of the digits, tests of the digits and the use of
 the tables. The digits were prepared by driving electronic counters by electronically generated noises.
 Tables of random numbers are still used in experimental sciences such as design of experiments in
 agriculture, medicine or sampling surveys for randomization purposes to eliminate bias. However,
 in large scale simulation experiments, tables are of little use since millions of random numbers are
 required.

 With the birth of computers classes of random generators such as linear congruential, multiple
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 330 Y. DODGE

 recursive, Tausworthe, lagged-Fibonacci, generalized feedback shift register, and several combined
 generators just to name a few, were invented. Numbers generated with deterministic algorithms are

 called pseudorandom numbers. Since these types of generators are not the main subject of this paper,
 only a brief description of the most commonly used generators, the linear congruential family along
 with some cautionary notes will be given in Section 2.

 The purpose of this article is to suggest that the billions of decimals of 7r now available are a natural

 source of a random number generator. In Section 3 we provide a brief history of 7r. This section
 includes the empirical determination of the value of 7r which cover the geometrical estimation of
 7r, analytical expression for 7r, the calculation of its decimals and new algorithms for 7r. Section 4
 examines the statistical studies on the decimals of 7r in order to investigate their randomness and
 makes some recommendations toward the future uses of r 's decimals as a natural source of random
 numbers.

 2 Uniform random number generators

 With the invention of the computer, scientists began to explore the possibility of efficient methods

 of obtaining a sequence (Ui) = Uo, U1, U2, ... of independent random numbers with computer
 programs by deterministic functions with a specified distribution. The most common distribution used

 in stochastic simulations for generating a sequence of random numbers is the uniform distribution
 on [0,1 [. A uniform distribution over a finite set of numbers is one in which each possible number
 has equal probability. For example, each of the ten digits 0, 1, ..., 9 will occur about 1/10 of the time
 in a sequence of random digits. Each pair of two successive digits should occur about 1/100 of the
 time, and so on.

 The pioneer work of John von Neumann (1951), the "middle square" which was first introduced
 in about 1949, has proved to be a poor source of random numbers. An n digit number is squared to
 produce a 2n digit number from which some middle n digits are taken for the next number and the
 process is repeated. The sequence gets into a short cycle of repeating elements, specially if a zero
 appears as an element of the sequence it will continually perpetuate itself.

 Lehmer (1951) introduced a method called the linear congruential. In this method, the sequence
 Xi of random numbers integers is obtained by

 Xi+1 = (aXi + c) mod m, i > 0, (2.1)

 where X0 (0 < Xo < m) is the starting value, a (0 < a < m), the multiplier, c (0 < c < m),
 the increment and m > 0 is the modulus. The random sequence (Ui) is determined by (2.1) and
 Ui = Xi/m (real valued between zero and one) once the starting value (seed) is given. The optimal
 choices of a, c, Xo and the modulus are still subject to extensive research.

 Since then hundreds of attempts have been made to produce many classes of generators of random
 numbers with long cycles, repeatability, speed, and good approximation to the uniform distribution.
 For extensive bibliographies on random generation and testing covering the periods of 1927-1971
 and 1972-1976 the reader is referred to two papers by Sowey (1972) and (1978). In both articles about
 450 references are listed chronologically and also under specially devised classification scheme. For
 a classical reference on pseudorandom numbers and especially on linear congruential sequences, see
 Niederreiter (1978). Rubinstein (1981), Ripley (1987), L'Ecuyer (1994) and Tezuka (1995) provide
 detailed surveys of the most recent papers on the uniform random number generators.

 Ripley (1990) compares several generators across a wide range of machines. While recommending
 a couple of generators, he writes: "The whole history of pseudorandom number generation is riddled
 with myths and extrapolations from inadequate examples. A healthy dose of scepticism is needed in
 reading the literature."
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 A Natural Random Number Generator 331

 Knuth (1981) provides a complete chapter of 177 pages on random numbers. The chapter includes
 all that one should know about the science of generating random numbers such as what is a random

 number, methods of generating random sequences, statistical tests for, algorithms and computer
 programs. In page 173 he writes: "The authors of many contributions to the science of random number

 generation were unaware that particular methods they were advocating would prove to be inadequate.
 Perhaps further research will show that even the random number generators recommended here are
 unsatisfactory; we hope this is not the case, but the history of the subject warns us to be cautious.
 The most prudent policy for a person to follow is to run each Monte Carlo program at least twice
 using different sources of random numbers, before taking the answers of the program seriously; this
 not only will give an indication of the stability of the results, it also will guard against the danger
 of trusting in a generator with hidden deficiencies. (Every random number generator will fail in at
 least one application)." For example, L'Ecuyer & Cordeau (1996) show that the random number
 generator of type (2.1) with m = 231 - 1 and a = 16807 (IMSL) and another one with m = 232,
 a = 69069 and c = 1 do not pass the nearest pair test.

 In what follows an attempt is made to present a random numbers generator, that passes all
 the current and future statistical tests with probability one. It is called a natural random number
 generator.

 3 A brief history of 7r

 The history of 7r is the story of man from the magnificent era of Babylonian-Egyptians to our
 modem day time, covering over 4000 years of history of mankind. The number was defined as the

 ratio of the circumference and the diameter of a circle, and by about 2000 B.C., the Babylonians
 found its approximate value to be 3 1/8 and the Egyptians had arrived at the value of 4(8/9)2.
 The Old Testament (1 Kings 7:23, and 2 Chronicles 4:2), contains the verse: "Also he made a

 molten of sea of ten cubits from on brim to brim, round in compass, and five cubits the high thereof;
 and a line thirty cubits did compass it round about."
 The molten of sea, is round; it measures 30 cubits round about in circumference and 10 cubits from

 brim to brim in diameter and hence the biblical (implicit) value of 7r is 30/10=3. According to Chabert

 et al. (1994) the Bible citation is probably written around 600 B.C. and during this period better
 estimates of 7r existed. Consequently this passage should not be interpreted to mean an estimate for
 7r. However, van der Waerden (1983, pp. 187-191) in discussing the Mishnat ha-Middut (a Hebrew
 treatise on mensuration which is assumed to be written by Rabbi Nehemiah around 150 A.D) writes:
 "Next follows a discussion of a passage in the Bible, in which it is said that a molten sea, round
 in compass, measures 10 cubits from brim to brim, while its circumference is said to be 30 cubits.

 The author tries to bring this into accord with the opinion of the "people of the world" who say that
 the circumference of a circle contains 3 + 4 times the diameter. According to his interpretation, the
 difference is due to the thickness of the sea at the two brims. The author's opinion seems to be that
 the diameter of 10 cubits included the walls of the sea, while the circumference excluded them."
 Thus confirming the Biblical citation to be an estimation of 7r.

 3.1 Geometrical Estimation of r

 Archimedes of Syracuse (287-212 B.C.) was the first to give a method of calculating ir to any
 desired degree of accuracy. He considered inscribed and circumscribed polygons of 96 sides and
 gave the estimate of

 3 10/71 < ir <3 1/7.

 To improve on Archimedes estimate, it is sufficient to increase the number of sides and calculate
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 the perimeters or areas of the polygons more accurately. Archimedes calculated 7r to the equivalent
 of two decimal places.

 According to van der Waerden (1983), Apollonios of Perge (225 B.C.) wrote a treatise entitled
 "Rapid Delivery", in which he improved on Archimedes' estimate of 7r. Tannery (1893) conjectured
 that Apollonios' estimate of 7r was 7r = 3.1416.

 Heron (62 A.D.) calculates the area of a circle as 3 + 1 times the square of the radius, and the

 circumference as 3 + 1 times the diameter. According to van der Waerden (Chapter 7), the Chinese
 geometer Liu Hui (263 A.D.) gives two estimates for nr

 r = 3.14 and 7r = 3.1416

 and Tsu Ch'ung-Chih (430-501 A.D.) presented a more accurate value

 r = 355/133 = 3.1415929...

 Li Shung-Feng (7th century A.D.) used the value of 22/7 for 7r. Aryabhata (6th century) the
 Hindu astronomer gives the fraction 62832/20000 the same fraction in the reduced form 3927/1250.
 According to van der Waerden (1983, p. 186) the estimates given by Liu Hui, Aryabhata and Bhaskara
 II all are derived from one and the same source which is probably due to Apollonios.

 Anthoniszoom (1527-1607) found the value 355/113, which is correct to 6 decimal places. Von
 Rouman (1561-1615) used Archimedean polygons with 230 sides to calculate 7r with 15 decimals.
 Ludolph van Ceulen (1539-1610) used a polygon with 6 x 229 sides to calculate 7r with 20 decimal
 places. (Germans call 7r the Ludolphine number).

 3.2 Analytical Expressions for 7r

 Viete (1593) was the first to give 7r by an analytical expression of an infinite sequence of algebraic
 operations as

 2 1 111 1 1 1 11 2-= 1 + I -+I + I+ + I .1 (3.1) 7 2 2 2 2 2 2 2 2 2

 He derived this formula by relating the area of an n-sided polygon to that of a 2n-sided polygon.
 Viete did not use (3.1) for calculation of 7r correct to 9 decimals. He used the Archimedean method
 by taking a polygon of 393 216 sides.

 Wallis (1656) derived the infinite product expression for 7r as

 nr 22446688
 2 1 3 3 5 5 7 7 9 (3.2)

 and Lord Brouncker in 1658 found the infinite continued fraction development

 4 12
 -- = 1 + 2 (3.3)

 2 + 52
 2 + 72

 2 +
 2 +

 Leibniz (1682) obtains Ir by an alternating series
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 I 1 1 1 1 1
 --=1 + + + ..... (3.4) 4 3 5 7 9 11

 Leibniz discovered (3.4) in 1673 but it was published 9 years later in Acta Eruditorum. To obtain
 even two decimal places one is required 300 terms of (3.4).

 Before the work of Leibniz, Gregory discovered in 1671 the development of arctan x

 3 5 7

 arctanx=x - y- y + ...... -1<x<1 (3.5)
 but failed to note explicitly the special case corresponding to x = 1, which is (3.4) due to Leibniz.
 In a letter to Oldenburg dated October 24, 1676, Newton discovered the power series

 1x3 1 3 x5
 arcsin x = x + + +... - 1 < x < 1 (3.6) 2 3 2.4 5

 and by setting x = 1/2 he obtained arcsin (1/2) = 7r/6 which converges more quickly than that of
 (3.5). To obtain 15 correct decimal places for 7r, he used

 3 V 1 1 1

 7- 4 + 12 5.25 28-27 72-29 (3.7)
 The astronomer Abraham Sharp (1651-1742), at the suggestion of Halley, the English astronomer

 and mathematician substituted x = V/(7/3) in (3.5) and with this new series calculated 7r to 72
 decimal places in 1699.

 In 1705 John Machin derived a new formula to make (3.5) rapidly convergent and easy to calculate.
 The formula which is named after him is

 r/4 = 4 arctan - - arctan (3.8) (5 (239
 Substituting the Gregory series for the two arctan in (3.8), he obtained

 (1 1 1 )
 7r/4=4 5 3-.53 5.55 "'

 1 1 1(3.9)

 239 3- 2393 5 2395 -.. (3.9)
 Machin used (3.9) to calculate 7r with 100 decimal places. Machin's formula and the value

 calculated for 7 was published by William Jones in 1706 in his Synopsis Palmariorum Matheseos
 or a New Introduction to Mathematics.

 De Lagny (1719) using a new series for arctan

 r/4 = arctan ( + arctan ( (3.10)
 calculated 127 decimal places for Ir (the I 13th place has a unit error).

 Using the relation (3.10), Euler (1748) finds
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 (-71)n + - (-1)n3 / (2n + 1) 22n+1 (2n + 1) 32n+1 n>O n>O

 which has a better rate of convergence. Euler denote this formula by Ir, the symbol which was
 employed for the first time by Jones (1706) for the circle ratio.

 Finally in 1755, using arctan formula, Euler found one that converged much faster than any other:

 (y) 2 2-4 2-4.63 (3.12)
 arctan x = 1+ Y+3y2 +3 Y +... (3.12) x 3 3-5 3-5.7

 where y = x2/(1 + X2). Using the Machin-like formula

 r = 20 + 8 n a 7c+ 8 arctan (3) (3.13)
 coupled with (3.12) allowed Euler to calculate 7r to 20 digits in under one hour.

 Vega (1794) employed (3.13) in conjunction with (3.5) to compute 7r to 140 decimal places, of
 which 136 were correct. Vega's result showed that De Lagny's digits of 7r had a 7 instead of an 8 in
 the 113th decimal place. Rutherford (1841) based on Euler's new formula

 /4 = 4 arctan )- arctan (70 arctan (-) (3.14)
 computed Ir to 208 decimal places of which 152 were correct.

 Dahse (1844) at the age of 20 used the formula due to Strassnitzky

 r/4 = arctan ()+ arctan ()+ arctan Q)
 to calculate 200 decimal places of 7r within a period of two months. In 1847 Thomas Clausen
 employed the formula

 r/4 = 2 arctan - + arctan (

 to compute 248 decimal places. The same formula was used by Lehmann (1853) to calculate Ir with
 261 decimal places.

 Shanks (1853) used Machin's (3.8) formula to calculate ir to 607 decimal places, correct to 527
 decimal places. Later Shanks (1873a,b) published the extension to 707 decimals carrying with it the
 errors committed in his book of 1853.

 Loney (1893) and Stirmer (1896) independently discovered the formula

 /4 /1\ (iN (1
 r/4 = 3arctan - + arctan - + arctan 1985 (3.15)

 and with this formula, Ferguson (1946) in one of the last hand calculations produced 530 decimal
 places. Ferguson then discovered a discrepancy between his results and that obtained by Shanks
 beginning with the 528th decimal place. Ferguson (1946) published Shanks error as a note, and
 continued his calculation of Ir to 620 decimal places. Using a desk calculator Smith, Wrench &
 Ferguson (1946-1947) calculated r to 710 decimals and finally Ferguson & Wrench (1948-1949)
 reached 808 decimal places.
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 For a complete history of computation of 7r from down (2000 B.C.) to 1970 readers are referred
 to an excellent book on the subject by Beckmann (1977).

 3.3 Computer Age

 The calculation of 7r with computer programs started with ENIAC (Electronic Numerical Integrator
 and Computer) by Reitwiesner (1950). In 70 hours using Machin's formula, Reitwiesner obtained
 2037 digits of 7r. A calculation of 7r was performed on the NORC (Naval Ordnance Research
 Calculator) by Nicholson & Jeenel (1955) at the Watson Scientific Computing Laboratory produced
 3089 digits. The formula used was the same as that employed for the ENIAC computation in
 conjunction with the Gregory series (3.4).

 The form of the expression used for the NORC computation was

 /4 = (-1) 100(0.2)2n+3 - (1/239)2n+1
 n=O 2n + 1

 Felton (1957) reported 10,000 digits in 33 hours on Pegasus Computer at the Ferranti Computer
 Center in London. He used the relation which was discovered by Klingenstierna in 1730

 r/4 = 8 arctan - arctan - 4 arctan . (3.16) (10) (239 515
 The formula (3.16) was rediscovered by Schellbach (1832). A check calculation using formula

 (3.17) showed that, due to machine error, Felton's result was incorrect after 7480 decimal places.

 Genuys (1958) had computed in 100 minutes on IBM 704 using Machin's formula in conjunction
 with Gregory's series 10,000 digits.

 S(-1)k f 16 4
 k=o (2k + 1) 52k+1 2392k+1 1

 Shanks & Wrench (1962) on an IBM 7090 computed 100,000 digits of 7r in 8 hours and 43 minutes
 using the formula

 r = 24 arctan Q + 8 arctan ( ) +4 arctan . 8(57)(239
 They checked their findings using Gauss's (1863) formula :

 7r = 48 arctan 32rctanc - - 20 arctan (3.17) 18)57) 239
 and according to their report, the 100,000 decimal places are entirely free from error. They also
 raised the question of computing r to 1,000,000 decimals. Shanks and Wrench proposed to compute
 1/rr by Ramanujan's (1914) formula:

 1 11123 225831 1.3 440431.3 1.3.5.7 - - + 8821 28)
 Ir 4 882 8823 2 42 48825 2(4 42 . 82 (3.18)

 Shanks (1982) proposed the formula

 6 [ ( 4(1 47 2488 138799 )
 [-nA352 u+4 u6 2u12 3u8s 4u24 J
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 where

 1071 1553 \ 1\4 (627 u=2 - 2+ 92v/ ? 2 + 133 4 " 429+ 3044/ + 221V-1
 which gives 79 exact decimals per term calculated.

 Mauron (1992) computed the first 1,000,000 digits of 7r using Leibniz, Machin and St6rmer
 formulas. The complete Computer programs along with the material used for such calculation is
 provided at the end of the book.

 3.4 New Algorithms for 7r

 All algorithms given in the above subsections have an approximately linear convergence to Ir.
 This means that n iterations of the algorithm used (that is the calculation of n terms in the chosen
 expansion for Ir) give a multiple of n exact digits of Ir.

 Brent (1976) and Salamin (1976) discovered independently an algorithm that has a quadratic con-
 vergence to 7r. This means that the number of correct digits obtained by this algorithm approximately
 doubles from one iteration to another. This formula is a direct consequence of Gauss' arithmetic-
 geometric mean and of Legendre's relation for elliptic integrals. The arithmetic geometric mean of
 two numbers ao and bo is defined as follows:

 agm(ao, bo) = lim an = lim bn
 n--oo n--oo

 where the sequences (an) and (bn) are defined recursively such that

 an = (an-I + bn-1)/2 and bn = an-1 bn-l.
 The formula for Ir is then the following

 4 agm2(ao, bo)

 1 - E 1 2j+lc

 where

 ao = 1

 bo = I/
 c2 2 - b2 n n n-.

 Salamin (1976) notes that "it is quite surprising that such an easily derived formula for Ir has
 apparently been overlooked for 155 years". The fact is that Gauss in 1818 and Legendre in 1811 had
 already discovered the necessary results to derive this new formula for 7r.

 To approach 7r using this formula, we have to calculate

 4a2

 1n = 1 2j+l c2 (3.19)

 Then 719 is correct to over one million digits of r whereas r26 to almost 200 million. Kanada &
 Tamura (1983) used this algorithm to compute Ir over 16 million decimal digits in less than 30 hours
 on a Hitachi S-810/20. Using the same formula Kanada (1988) calculated r to 201,326,000 correct
 decimal places on HITAC S-820/80 in 5 hours and 57 minutes.

 Borwein & Borwein (1984) discovered another quadratically convergent algorithm for Ir which
 is a refin of the Brent-Salamin formula and can be stated as follows. Let ato = VJ, So = 0 and
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 A Natural Random Number Generator 337

 7ro = 2 + */2. Then define sequences (a,), (fin) and (7rn) such that

 Oan+l = (V- + 1/)/2
 n+1 = - +1

 in + an
 1 + an+1

 Jn+1 = n * fln+l
 1 + Bn+l

 Then ir20 is correct to about 2 million digits of Ir.

 In Borwein & Borwein (1987), Bailey (1988a) and then in Borwein, Borwein & Bailey (1989)
 we find cubically, quartically and quintically convergent algorithms for 1/1r. This means that each
 iteration triples, quadruples, respectively quintuples the number of correct digits obtained.

 Borwein's quartically convergent algorithm for 1/7r can be stated as follows: Let ao = 6 - 4V/2-
 and yo = N/ - 1. Iterate

 Yn+1 =

 and

 an+1 = (1 + Yn+i)4 a - 22n+3n+1 + Yn+1 + Yn+1)
 then

 0 < an - 1/r < 16 -4ne-24n"

 and an converges to 1/7r quartically. Each successive iteration approximately quadruples the number
 of correct digits in the result. It is with the quartically convergent algorithm that Bailey (1988b)
 computes 7r to 29,360,000 decimals in about 40 hours on a Cray-2.

 On July 28th, 1995, the program of Takahashi, a member of Kanada Laboratory used HITAC S-
 3800/480 at the Computer Centre, University of Tokyo, to compute 4,294,697,296 (= 232) decimal
 digits of 7r with Borwein's 4th order convergent algorithm. The verification program started on August
 11, 1995 at 21:31 and ended on 14th August, 1995 at 15:54 using Gauss-Legendre algorithms. On
 September 24th, 1995, the same group of Tokyo under the leadership of Kanada used Borwein's 4th
 order convergent algorithm with Gauss-Legendre algorithm for verification on October 6th, 1995
 calculated 7r to 6,442,450,938 (=3-231) decimal digits. It is the actual world record.

 Borwein's quintically convergent algorithm for 1/7r is the following: Let so = 5 (J - 2) and ao = 1/2. Iterate

 25

 Sn+1 = (Z + x/z + 1)2 Sn

 where

 x=5/s,-1, y=(x-1)2+7
 and

 z= [ yX + /yE-4x3) j1/
 Iterate

 an+1 = s - s5 2 -5 sn(s-2sn+ 5)
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 Then

 1

 0 < a - - < 16 - 5ne-"r 7r

 and n converges to 1/7r quintically. Each additional iteration of the algorithm quintuples the
 number of correct digits. To obtain around one billion digits of 7r requires just thirteen iterations of
 the algorithm.

 More recently, Bailey, Borwein & Plouffe (1995) discovered an algorithm that is able to compute
 the d-th hexadecimal digit of 7r without computing all precedent digits (but the convergence is only
 linear). It is based on the new formula

 S0 1 4 2 1 1

 7= 16n 8n + 1 8n + 4 8n + 5 8n + 6
 4 Statistical studies on 7r

 The calculation of the decimal digits of Ir may have had many different reasons since the early
 efforts of the Babylonians and Egyptians. For most applications computing few decimals is enough.
 The major motivation behind computation of 7r in modern time concern the normality (see Section
 4.2) or randomness of its digits. The extended precision calculation is also used to detect hardware
 errors. Large scale calculations of Ir are now used routinely as a quality control to check super-
 computers before leaving the factory.

 In this section we provide a summary of statistical tests that have been applied to decimals of
 Ir in order to investigate their randomness. First we consider empirical statistical tests and later a
 theoretical aspect of the randomness of digits of 7r is discussed.

 4.1 Empirical Statistical Tests

 The null hypothesis is Ho: "The sequence is a sample of i.i.d. U(0,1) random variables", and a
 statistical test tries to find empirical evidence against this hypothesis. If a generator passes all existing

 empirical statistical tests, it does not imply that it will not fail the future one. However, researchers
 who use random numbers like to find generators that pass with high probability all the existing
 statistical tests in some reasonable CPU time.

 Kendall & Babington-Smith (1938) suggested four tests for deciding whether a given set of
 digits is locally random. These are, the frequency test, serial test, poker test and gap test. The
 authors, however, warn the reader that these tests are not sufficient to establish the existence of local

 randomness, although they are necessary.
 Kendall & Babington-Smith (1939a) were first to raise the random nature of Ir's decimals but at

 that time, the number of known decimals of 7r was not enough to be used as such.

 For testing the hypothesis that the empirical frequencies of n-long strings of digits are random the

 X2 test is used. The X2 statistic is defined to be

 2= k (Oi - Ei)2
 i=1 Ei

 where Oi and Ei are the observed and the expected value of the random variable respectively.
 Metropolis, Reitwiesner & von Neumann (1950) carried out a statistical treatment of values of

 first 2000 decimal digits of e and Ir by studying the frequency distribution of the various digits

 (0,1,2,.....,9) calculated on the ENIAC by Reitwiesner (1950). Using the x2 test, they concluded that
 the first 2000 digits of e have no random character (too good to be true) but their survey failed to
 disclose any significant deviations from randomness for r.
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 Greenwood (1955) found that the coupon-collector test was satisfied by the first 2035 digits in

 the decimal expansion of 7r given by Reitwiesner (1950). This study was extended to about 3000
 decimal places by Nicholson & Jeenel (1955).
 Wrench (1960) used a X2 test for goodness of fit on 16,167 (16,000 were tabulated and tested)

 decimal digits of 7r and found no abnormal behaviour in the distribution of digits. He also raised the
 question of normality of 7r.

 Pathria (1962) made statistical study of randomness among the first 10,000 digits of 7r computed
 by Genuys (1958). By applying the frequency test, serial test, poker test and the gap test of Kendall
 & Babbington-Smith (1938) as well as Yule (1938), the five-digit sum test, he reported that, the first
 10,000 digits of 7r are in fact random.

 Esmenjaud-Bonnardel (1965) reports the result of four statistical tests on the first 100,000 digits
 of 7r calculated by Shanks & Wrench (1962). She also gives the results of tests applied to the first
 100,000 digits of the table published by RAND Corporation (1955). Her final conclusion is that, the
 use of the first 100,000 digit decimals of 7r as random numbers is perfectly justifiable.

 Lauro (1972) also studies the decimals of 7r and arrives at the same conclusion as Esmenjaud-
 Bonnardel.

 Bailey (1988b) calculated 29,360,000 digits of 7r and provides the frequencies of n-long string for
 randomness up to n = 6. The results of Bailey's frequencies for one digit strings is given in Table 1
 along with the standardized normal deviates or z-score. Based on three statistical tests, namely the
 frequency test, the serial test and the run test he concluded that the decimal expansion of 7r appears
 to be completely random.

 Table 1

 Single digit statistics on 29,360,000 decimals of
 ;r (source: Bailey, 1988b)

 Digit Count Deviation z-score

 0 2,935,072 -928 -0.5709

 1 2,936,516 516 0.3174

 2 2,936,843 843 0.5186

 3 2,935,205 -795 -0.4891

 4 2,938,787 2787 1.7145

 5 2,936,197 197 0.1212

 6 2,935,504 -496 -0.3051

 7 2,934,083 -1917 -1.1793

 8 2,935,698 -302 -0.1858

 9 2,936,095 95 0.0584

 Johnson & Leeming (1990) examine the first 100,000 digits in the decimal expansion of 7r, e, ,/2,

 /3, V5, v/ , i/7 , and VI-3 for properties of randomness based on several different runs statistics.
 They showed that both nr and V,7 achieved higher randomness ratings than the best of 10 independent
 100,000-digit runs from each of the two random number generator routines, namely URAND and
 C05DYE

 Kanada (1988, 1995) provides summary of frequency for the first 6,000,000,000 digits of zr as
 well as of the corresponding X 2 values (see Table 2 and Figure 1). It is remarkable to note that none
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 of the X2 values are significative up to a level of 20% and hence the decimal places up to 6 billions
 have not disclosed any irregularity.

 95%

 16

 90%
 14

 12 80%

 I0
 ~ 10 gs

 *s ?

 0 I0 , I N

 >6 ~ ! t~ ! tl I + ! I I II ! ! !~ l

 Figure 1. Plot of the calculated X 2 values for the first 4 billions digits of ;r

 As a conclusion of the above empirical studies on decimals of 7r we can cite Gardner (1966, p.99):
 "So far nr has passed all statistical tests for randomness. This is disconcerting to those who feel that
 a curve so simple and beautiful as the circle should have a less-disheveled ratio between the way
 around and the way across, but most of mathematicians believe that no pattern or order of any sort
 will ever be found in r 's decimal expansion."

 4.2 Does nr Satisfy All Statistical Tests?

 What if you slept? And what if, in your sleep, you dreamed? And what if in your dream, you went
 to heaven and there plucked a strange and beautiful flower? And what if when you awake, you had
 the flower in your hand? Ah, what then?

 Samuel Coleridge (1772-1834)
 English Poet and Philosopher

 The nature of 7r has been studied by mathematicians since the middle of the eighteenth century
 to present day. Lambert (1771) proved the irrationality of 7r by means of continued fractions and
 Lindemann (1882) established its transcendence. (The Lindemann result showed that squaring the
 circle is impossible).

 A question which arises now is whether there is an alternative way to prove that the digits of 7r are
 really random, with arguments other than empirical considerations. It is very difficult to answer this
 question because the concept of randomness is not well defined. Knuth (1981) in Section 3.5 entitled
 "What is a random sequence?" tries to make it precise. It appears that the concept of "randomness" for
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 Table 2

 Summary offrequency for the first 6,000,000,000 digits of 7r and corresponding chi-square values (source: Kanada, 1988, 1995)

 Digits 0 1 2 3 4 5 6 7 8 9j X2

 1-100 8 8 12 11 10 8 9 8 12 14 4.20

 1-500 45 59 54 50 53 50 48 36 53 52 6.88

 1-1K 93 116 103 102 93 97 94 95 101 106 4.74

 1-10K 968 1026 1021 974 1012 1046 1021 970 948 1014 9.32

 1-50K 5033 5055 4867 4947 5011 5052 5018 4977 5030 5010 5.86

 1-100K 9999 10,137 9908 10,025 9971 10,026 10,029 10,025 9978 9902 4.09

 1-500K 49,915 49,984 49,753 50,000 50,357 50,235 49,824 50,230 49,911 49,791 7.73

 1-iM 99,959 99,758 100,026 100,229 100,230 100,359 99,548 99,800 99,985 100,106 5,51

 1-10M 999,440 999,333 1,000,306 999,964 1,001,093 1,000,466 999,337 1,000,207 999,814 1,000,040 2.78

 1-20M 2,001,162 1,999,832 2,001,409 1,999,343 2,001,106 2,000,125 1,999,269 1,998,404 1,999,720 1,999,630 4.17

 1-30M 2,999,157 3,000,554 3,000,969 2,999,222 3,002,593 2,999,997 2,999,548 2,998,175 2,999,592 3,000,193 4,34

 1-50M 4,999,632 5,002,220 5,000,573 4,998,630 5,004,009 4,999,797 4,998,017 4,998,895 4,998,494 4,999,733 6.17

 1-o100M 9,999,922 10,002,475 10,001,092 9,998,442 10,003,863 9,993,478 9,999,417 9,999,610 10,002,180 9,999,521 7.27
 1-200M 19,997,437 20,003,774 20,002,185 20,000,410 19,999,846 19,993,031 19,999,161 20,000,287 20,002,307 20,000,562 4.13

 1-3000M 299,999,143 299,995,932 299,989,126 299,992,290 300,002,257 299,979,016 300,025,447 299,975,510 300,016,550 300,024,729 9.24

 1-6000M 599,963,005 600,033,260 599,999,169 600,000,243 599,957,439 600,017,176 600,016,588 600,009,044 599,987,038 600,017,038 9.00
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 a sequence formed by the digits of a real number is not so far away from the concept of "normality"
 of this number (see also Wagon, 1985).

 A number is said to be normal in base 10 if all digits 0,1,...,9 appear with equal frequency in
 its decimal expansion, as well as all blocks of digits of the same length. A number is then said to
 be (absolutely) normal if this statement is true whatever the base chosen to write its digits. Such a
 number has effectively the remarkable particularity that the sequence of its digits satisfy all known
 statistical tests for randomness such as those presented above (see Knuth, 1981, pp.151-152).

 Borel (1909) proved that almost all irrational numbers (in the sense of Lebesgue measure) are
 normal (see also Franklin, 1963 and Levin, 1975). The probability that 7r is normal is hence equal
 to one. Thus, as shown in Dodge & Rousson (1996), "A random sequence formed by the digits of
 7r will satisfy all statistical tests of randomness with probability one". And "A random sequence
 formed with the help of any artificial algorithm will satisfy all these tests with probability zero".

 Following Robert R. Coveyou's (1969) famous article entitled "Random number generation is too
 important to be left to chance" which is cited in numerous papers and books on random number
 generators, we suggest to replace the 1,000,000 random numbers published by the RAND Corporation
 (1955) by the 1,000,000 first decimals of 7r that can be found in Mauron (1992)! We also suggest to
 store on a CD-ROM some billions of decimals of 7r to be used as a natural random number generator

 which leaves no space for chance.
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 Resume

 Depuis l'introduction en 1949 par John von Neumann de la m thode "middle-square" pour g ndrer des nombres "pseudo-
 al atoires", des centaines d'autres m6thodes ont Wt6 propos es. Bien que chacune d'entre elles pr sente quelques avantages,
 aucune n'emerge rdellement du lot. Le probllme de trouver un generateur uniform ment sup rieur aux autres est rendu difficile
 par les nombreuses propri6t6s qu'un tel g ndrateur se doit de satisfaire comme de n'avoir pas de comportement cyclique et de
 passer avec succes les nombreux test statistiques. Le but de cet article est de suggerer comme source de nombres al6atoires
 celui qui nous parait le plus naturel d'entre tous, les d6cimales de Ir. Aucun cycle n'y a encore 6t6 d cel6 et les distributions

 de toute sq*uence finie de d cimales sont uniformes de telle sorte que ce g ndrateur satisfait tous les tests actuels. II est
 d'ailleurs conjecture qu'il satisfera tout autre test avec probabilit6 un. De plus, l'histoire de 7r, de sa d6couverte et de ses
 approximations successives est en rapport 6troit avec l'histoire de l'humanit6.
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